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ABSTRACT: Intrinsically disordered proteins are characterized by their large manifold of 

thermally accessible conformations and their related statistical weights making them an 

interesting target of simulation studies.  To assess the development of a computational 

framework for modeling this class of proteins, this work examines temperature-based replica 

exchange simulations to generate a conformational ensemble of a disordered 28-residue peptide 

from the Ebola virus protein VP35 starting from a prefolded helix-β-turn-helix topology 

observed in a viral assembly.  The simulation strategy tested is the recently refined 

CHARMM36m force field combined with a generalized Born solvent model to calculate 

probability density profiles and the results are compared to an equivalent CHARMM22 

simulation dataset. The assessment is further extended to include coarse-grained lattice Monte 

Carlo simulations to determine the accuracy of a reductionism perspective.  The analysis finds 

CHARMM36m to correctly shift the minimum in the potential of mean force to a lower 

fractional helicity as compared to CHARMM22, however in both simulation models the 

conformational plasticity along the helix-forming reaction coordinate was limited by free-energy 

barriers.  By comparison the coarse-grained model yielded a potential of mean force of lower 

resolution as anticipated, yet the model successfully showed multiple equally weighted low-

energy states of large-scale conformational heterogeneity not observed in the all-atom models.  
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1. INTRODUCTION 

Intrinsically disordered proteins (IDPs) that encompass “Dark Matter” proteomes play a 

fundamental role in the regulation and function of protein association networks.1-4  Their 

hallmark is large-scale conformational heterogeneity in free solution while finding a folded 

topology upon forming a multimeric assembly. An illustrative example is a 28-residue peptide 

region extracted from the Ebola virus protein VP35.5 The X-ray crystallographic structure of the 

peptide (designated as NPBP) bound to the Ebola virus protein NP shows a helix--turn-helix 

topology. In free solution NPBP transitions to a disordered ensemble as observed from circular 

dichroism (CD) spectroscopy.5  What makes the disorder-order transition of NPBP of larger 

interest is when added to a solution of 50% trifluoroethanol (TFE) the CD spectrum shows the 

peptide transitions from an unstructured ensemble to structures containing helical folds.  This 

hidden propensity of NPBP and conceivably that of many other IDPs makes atomistic simulation 

studies challenging to capture a heterogeneous conformational ensemble without being overly 

biased by the susceptibility to fold.  The challenge is amplified by the inherent deficiencies of 

all-atom force fields and solvent models that tend to over stabilize fold propensities.  

The topic of this brief study is to test the recently reported CHARMM36m force field in a 

temperature-based replica exchange6 (T-ReX) simulation of NPBP.  The force field is a 

refinement of an earlier version to improve the accuracy in polypeptide backbone conformational 

ensembles for IDPs.7   Although the development of CHARMM36m is primarily intended for 

explicit solvent simulations, the work here applies the force field with a generalized Born (GB) 

solvent approximation represented by the GBMV2 model.8  Given the continued refinement of 

force fields and optimization studies of GB models,7,9 it is of general interest to determine if the 

combined CHARMM36m/GBMV2 simulation strategy provides a framework for modeling 

IDPs.10-12  While GBMV2 is a computationally efficient model as compared to explicit solvent 

simulations and has shown to accurately reconstitute the thermal stability of small α-helical and 

β-folded proteins,13-16 questions remain if implicit solvent models can correctly shift the density 

of states of a prefolded IDP on an energy landscape with multiple kinetic traps to an ensemble of 

disordered states favored by configurational entropy.  To help with the assessment, the 

CHARMM36m/GBMV2 simulation results are compared to a reassessment of 

CHARMM22/GBMV2 simulation trajectories taken from an earlier study.17  The comparison 
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centers on computing potentials of mean force (PMFs) using the parallel tempering weighted 

histogram analysis method18 (PTWHAM) and the multistate Bennett acceptance ratio (MBAR) 

method.19  

A further comparison is provided of the all-atom protein simulation models with a 

coarse-grained (CG) method.  The method is based on low-resolution lattice Monte Carlo 

simulations and explores a reductionism strategy to modeling IDPs.  The modeling approach is a 

revisit of earlier work by Skolnick and coworkers of applying the side-chain-only (SICHO) 

model20,21 to NPBP.  Accurate reconstruction of all-atom protein representations from CG 

conformations is applied using the technique developed by Feig and coworkers.22   Previous 

successful application of the SICHO model with T-ReX and the rebuilding of all-atom structures 

is illustrated by the multiscale refinement of protein loops.23,24 Here, PMFs are calculated from 

the CG model and compared to the CHARMM36m and CHARMM22 generated conformations. 

2. METHODS 

CHARMM-based Simulations.  For conformational sampling of the 28-residue NPBP peptide, 

the self-guided Langevin dynamics (SGLD) method developed by Wu and Brooks25-26 was 

combined with T-ReX using a strategy first reported in modeling the Trp-cage mini-protein.14 

The simulation methodology and parameter set applied here are similar to that given in an earlier 

study of the NPBP peptide using the CHARMM22 force field with the GBMV2 solvent model.17 

Here, a summary of the approach is noted of applying CHARMM36m.   

The CHARMM simulation program27 (version c41b1) was applied using the utilities and 

programming libraries of the Multiscale Modeling Tools for Structural Biology (MMTSB).28 An 

integration time step of 2 fs was used and parameters for SGLD consisted of the friction constant 

set to 1 ps-1 for all heavy atoms, the guiding factor  to a value of 1, and the time average of the 

momentum was set to 1 ps. Non-bonded interaction cutoff parameters for electrostatics and non-

polar terms were set at a radius of 22 Å with a 2-Å potential switching function. Covalent bonds 

between the heavy atoms and hydrogen atoms were constrained by the SHAKE algorithm.29 The 

GBMV2 parameters were selected to smooth the molecular volume by setting gbmvabeta = –12 

and gbmvap3 = 0.65.13 The hydrophobic cavitation term was modeled by applying a 

phenomenological surface tension coefficient set to a value of 0.015 kcal/mol/Å2.  
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Simulations were carried out using 24 replica clients and the frequency of exchanges was 

set to every 1 ps of simulation. Temperatures were geometrically spaced between Tmin = 300 K 

and Tmax = 475 K.  The NPBP peptide was modeled for 200 ns of simulation time per client, 

generating an ensemble of 4.8 μs.  Culled structures consisted of 200000 per temperature and 

were used in the analysis of computing the secondary structure by the DSSP algorithm30 and the 

radius of gyration (Rg).  PMFs (denoted as the measure WT at temperature T) were computed 

using order parameters of fractional helicity (fH), Rg and Z-score of the potential energies as input 

to PTWHAM and MBAR calculations.  It should be noted that the PMFs generated by the SGLD 

method are prone to small deviations from a canonical description due to the ad hoc force term 

added to achieve enhanced sampling (see, e.g., Refs. 14 and 26). While an algorithmic scheme to 

reweight the biases of local averages of forces and momenta has been reported,26 the application 

is cumbersome and exceeds the purpose of this work where the deviation is thought to be small 

for a peptide.17 

Further analysis of the generated conformations was conducted using MMTSB to 

evaluate the population density of states by clustering methods that included hierarchical 

clustering (conformational and fH values) and k-means clustering (conformational).  Additional 

examination was conducted of the root-mean-square deviation (RMSD) in selected backbone 

angles Φ and Ψ from the initial folded peptide structure.  These values were computed across the 

ensemble for two helical segments and provided input into a PTWHAM calculation. 

Lattice Simulations. Chain conformations of NPBP were generated based on Monte 

Carlo sampling of a cubic lattice using the MONSSTER program developed by Skonick and 

coworkers.20,21   The SICHO model was applied where each amino acid is represented by a 

single virtual particle located at the side-chain center of mass and projected onto a cubic lattice. 

The force field consists of potential energy terms that account for short- and long-range 

interactions, hydrogen-bonding cooperativity, and a mean force potential that describes 

hydrophobic interactions.  Each force-field term is constructed of sequence-independent, 

sequence-dependent, and restraint components.  For the purpose of the work presented here, it is 

noted that the sequence-dependent terms were derived through geometric statistics of known 

protein structures and account for short-range interactions between nearest neighbors along the 

polypeptide chain, as well as long-range, pairwise, and soft-core repulsive interactions.20 
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The grid size for the cubic lattice was set at a value of 125 lattice units in each direction 

at a resolution of 1.45-Å grid spacing.  Two separate simulations were conducted, where the 

parameter stiff that controls the scaling of a generic potential term favoring the formation of 

secondary structure elements was varied. One simulation had the parameter set to a value of 1.0 

(where the default is 1.25) and the other set to 0.5.  Other parameters were set to their default 

values given in the MMTSB description.  Each of the two simulations was started from the PDB 

conformation of NPBP and the sequence file annotated with the DSSP secondary structure.   

The number of lattice T-ReX simulation cycles at each temperature was set to 20 and the 

number of Monte Carlo moves per cycle was 50. Culled conformations were extracted from 24 

replicas yielding a sampling size comparable to the all-atom simulations.  Replicas were 

exponentially spaced from a reduced temperature T of 1.0 to 2.4, where T is normalized by a 

reference temperature such that -1 = kBT represents the energy unit (where kB is the Boltzmann 

constant).  The value T = 1 is set to represent the distribution of conformations modeled by the 

SICHO force field at approximately 300 K. All-atom structures were reconstructed from the 

lattice simulations by using MMTSB.  As with the CHARMM-based simulations, PMFs were 

calculated and clustering of conformations was conducted.   

3. RESULTS and DISCUSSION  

The initial conformation of the NPBP peptide (numbered from residues 20 to 47) bound to Ebola 

virus protein NP is a topology of a helix--turn-helix fold and shows a fractional helicity of fH = 

0.43 from DSSP.  The two helices are partitioned as Trp28 to Thr35 and Val40 to Ile43.  The 

initial fold compactness is given by the dimension Rg = 10 Å and appears more collapsed than an 

estimate for a comparable unfolded 28-residue peptide showing Rg ~ 13 Å.31 

Potentials of Mean Force.  Illustrated in Figure 1 are the PMFs at 300 K evaluated by 

using PTWHAM for the analysis of the CHARMM-based simulations and the CG model.  

Comparison between CHARMM36m and CHARMM22 shows a clear distinction in population 

density underlying the conformational ensemble.  For CHARMM36m, the minimum in 

WT(fH,Rg) is observed at fH = 0.26 with a Rg = 7.7 Å, while CHARMM22 shows the minimum at 

fH = 0.53 and Rg = 9.8 Å. In addition, CHARMM22 shows a connecting local minimum at WT(fH 
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= 0.37,Rg = 7.9 Å) with a free-energy difference of only 0.05kBT from the global minimum.  To 

help place the minima in perspective, PTWHAM of conformations taken from an 

explicit/implicit solvent hybrid T-ReX molecular dynamics simulation study17 of NPBP with 

CHARMM22/TIP3P combined with GBMV2 for computing the Metropolis exchanges produced 

a minimum located at WT(fH = 0.26,Rg = 8.8 Å).  While CHARMM36m with GBMV2 is nearly 

equal to that observed of the explicit/implicit solvent simulation, the issue is conformational 

heterogeneity of the generated ensemble.   

Overall CHARMM36m corrects the weight of helix propensity compared to 

CHARMM22, yet the population density of both models remains in disagreement with 

observations from CD experiments without the addition of TFE.  With TFE, the experiments and 

simulation models are in better agreement in showing preferred helical states, however sampling 

from CHARMM36m is more confined than CHARMM22 and a possible kinetic trap is revealed.  

The latter becomes evident in comparing the energy Z-score landscapes, where CHARMM22 

simulation shows a manifold of shuttling conformations among the major basins through a 

pathway of favorable exchanges among the probability distribution.  The distinction between the 

two force fields is also highlighted from the difference in transition from the global minimum in 

each WT(fH,Rg) to an unstructured conformation (fH = 0, computed at an equivalent Rg as the 

minimum). The analysis shows for the two force fields that CHARMM36m yields a greater free-

energy difference of ~2 kBT.  An advantage for CHARMM36m is that transitions from the 

minimum to WT(fH = 0,Rg > 10 Å) shows less frustration than CHARMM22. 

To further characterize the landscape topology and explore differences in applying the 

CHARMM force fields with GBMV2, WT(fH,Rg) was recalculated by using the MBAR method.  

The analysis shows for CHARMM36m an equivalent minimum WT(fH = 0.26,Rg = 8.0 Å) as 

calculated from PTWHAM and a slight reweighting of the population density for CHARMM22 

to yield WT(fH = 0.46,Rg = 8.1 Å).  One notable difference is observed for CHARMM36m in that 

MBAR yields a deeper kinetic trap of ~3 kBT in stabilizing fH = 0.26 when transitioning to 

unstructured conformations.    
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It is important to note that the GBMV2 model is an accurate approximation of the 

Poisson implicit solvent model32 and applying the standard protocol of fitted parameters yields 

the good agreement with explicit solvent simulations of calculating the charging free energy of 

protein conformations.33    Deviation to the protocol by modification of Born radii on charged 

residues and reducing the surface tension of modeling the hydrophobic collapse may lead to 

lessening the kinetic trap observed in Fig. 1A.  Additional improvements may be achieved by 

incorporating volume and surface area nonpolar solvation free energy terms34 combined with 

adaptive parallel tempering methods.15,17,35  Alternately a unified strategy of re-optimization of 

the GBMV2 solvent force field for CHARMM36 has been recently proposed by Lee and Chen.9  

While the approach appears promising, further testing is needed for evaluating the adjusted 

GBMV2 parameters for various applications, including thermal stability of proteins with 

different fold propensities.  

The CG model simulation results of scaling the SICHO potential term favoring the 

formation of secondary structure elements by the stiff parameter of 1 (see Methods) is shown in 

Fig. 1C of using reconstructed all-atom structures from the lattice generated conformations.  

PTWHAM of the simulation data is presented and similar results were obtained from MBAR.  

Analysis reveals the CG model produced significant conformational plasticity among multiple 

states with free-energy barriers < 0.01 kcal/mol.  While WT(fH,Rg) is of lower resolution in 

defining density contours, the CG model exhibits specificity in lattice energies as displayed in 

the energy Z-score profile.  At the same time the model avoids kinetic traps to produce a 

landscape more consistent with the notion of a disordered ensemble for NPBP.  Given the 

observed conformational heterogeneity, a simple measure of sampled space is the statistical 

average of populations at T = 1 and is given by fH = 0.42  0.14, where the value approaches the 

cluster of conformations described by the CHARMM22 WT(fH,Rg) minimum.  Reducing stiff to 

0.5 returns an average of 0.11   0.12.  In both CG model strategies, the simulations unfold and 

refold NPBP and selection of parameters near the default values offers a fair assessment of the 

accuracy in modeling heterogeneity of secondary-structure formation.  

Structural Analysis.  Displayed in Fig. 2 is the starting NPBP conformation bound to the 

Ebola virus protein NP.  As noted above, NPBP is composed of two helical regions denoted as 
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α1 of residues Trp28 to Thr35 and α2 for residues Val40 to Ile43.  Illustrated in Fig. 2B are 

conformations taken from clustering the CHARMM36m generated ensemble at 300 K.  A further 

comparison is made with structures from CHARMM22 simulation17 (Fig. 2C) and a set of all-

atom structures reconstructed from the CG generated conformations (Fig. 2D).  

 Analysis of the extracted structures from CHARMM36m/GBMV2 shows the 

conformation located at the sampled potential energy minimum (Emin) contains a short helix (fH = 

0.26) in the α1 region.  This structure best represents the minimum in WT(fH,Rg) while the 

remaining structures exhibit varying helical lengths in α1.  Unlike CHARMM36m, the Emin of 

CHARMM22/GBMV2 contains a helix-turn-helix fold of fH = 0.43 showing similarity to the 

bound form.  For the CG model, contrary to possible chain distortions and entanglements owing 

to the lower resolution, the simulation yielded well formed structures with Emin containing a 

longer helix of fH = 0.43.  The CG landscape of WT(fH,Rg) shows a multiple transitions among 

the structures where fH < ~ 0.5, while the fold positioned at fH = 0.75 is of low population.   

Figure 2E reports the C RMSD of structures extracted from the simulation models at 

300 K relative to the prefolded NPBP conformation.  The analysis shows the RMSD values are 

in the range of 5-7 Å of which the CG model reveals the greatest net value.  More importantly, 

the RMSD profiles lack significant disorder of round trips from the initial prefolded state to large 

Cexcursions.  This observation has implications on how the simulation models would 

represent molecular recognition of NPBP by the protein NP.  It suggests the kinetics of 

recognition is by structural reorganization via “induced-fit” mechanism of helical populations 

rather than the slow rate-limiting step of capturing a completely unfolded state.  

 Unlike CHARMM36m, the CHARMM22 and CG models show conformations with 

helical folds in the α2 region.  To further investigate the clustering of structures and the limited 

folds of a α1-turn-α2 topology found by CHARMM36m, Fig. 3 illustrates PTWHAM assessment 

of conformational landscapes of RMSD in backbone angles  and  from the prefolded peptide 

for 3-residue segments Ser30-Glu31-Gln32 of α1 and Val40-Ser41-Asp42 of α2.  The analysis 

finds for α1 (Fig. 3A) the highest populated basin to be located at small RMSD differences while 

the landscape shows considerable conformational populations spread out among the profile.  For 

α2, a strikingly different result is obtained where the landscape shows “hot” population regions 
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of deviations largely removed from the initial structure, indicating weak stability in the short 

helix.  Interestingly, a further analysis shows that only CHARMM36m/GBMV2 samples a 

transient -hairpin in the C-terminal region combined with α1.  This arrangement found by 

CHARMM36m is surprisingly consistent with unbiased predictions of secondary structure by a 

consensus approach.36 

Helix Stiffness and Compactness Propensity.  Illustrated in Figure 4 are plots of helix 

formation and fold compactness as a function of sampling temperatures.  Shown are statistical 

averages over datasets for CHARMM36m, CHARMM22 and the CG model.  For the latter, 

effective temperatures from the reduced representation of the lattice simulation model were 

approximately scaled to those of the all-atom simulations.  Also shown in the plots is an 

assessment of the statistical averages for the CHARMM36m simulation by overlaying values of 

fH and Rg where WT(fH,Rg) = 0 along the temperature profile computed from MBAR.   

As anticipated, the analysis shows the CG model to exhibit the weakest cooperativity and 

thermal stability in helix formation among the simulation models (Fig. 4A).   While 

conformational excursions produced by the CG model sampled significant helical populations, 

the statistical average is located among multiple low free-energy states where barriers in 

WT(fH,Rg) are ~ 0.01 kBT.  By comparison, the results show CHARMM36m to retain helical 

states observed in the WT(fH,Rg) minima over a 50-K temperature span, before the secondary 

structure unravels.  Of the two all-atom force fields and their thermal profiles, CHARMM36m 

provides a better model of the experimental CD observations.5 

One of the concerns of applying implicit solvent descriptions to modeling large-scale 

conformational heterogeneity is that the sampled structures will be overly collapsed (see, e.g., 

comparison of solvent models in Ref. 17).   Figure 4B shows all three simulation models are 

plagued by extended compactness of the generated conformations.  As a noted benchmark, the 

prefolded peptide conformation shows a Rg ~ 10 Å in the multimeric complex.  A further 

observation in Fig. 4B reveals significant deficiency in the CG simulation model.  While the 

model samples Rg > 15 Å as shown in the WT(fH,Rg), the SICHO force field strongly favors 
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compacted topologies during replica exchanges, making this simulation approach less attractive 

for modeling multistate ensembles of thermal unfolding transitions. 

4. CONCLUSIONS 

This study investigated the application of the CHARMM36m force field with the GBMV2 

implicit solvent model in a replica exchange simulation of calculating the conformational 

ensemble of a 28-residue IDP from the Ebola virus protein VP35. Comparisons were made with 

data from an equivalent CHARMM22/GBMV2 simulation study and a coarse-grained model of 

applying a lattice Monte Carlo simulation. The central issue of the study is the applicability of 

potential energy functions applied in parallel tempering algorithms as a computational approach 

for modeling large-scale conformational heterogeneity. The measure of success was the accuracy 

to replicate a disordered conformational ensemble of the peptide as measured from CD 

experiments. Starting from a helix-turn-helix topology, the results revealed that CHARMM36m 

combined with GBMV2 produced a potential of mean force of lower fractional helicity than 

CHARMM22, yet neither simulation model captured significant conformational plasticity along 

the helix-forming reaction coordinate between unstructured and folded conformations. 

Moreover, the models displayed a helix propensity with an extended thermal stability over the 

ensemble and the conformations were overly collapsed in the dimension of radius of gyration. 

Overall the study demonstrated that the accuracy of the GBMV2 model in its standard protocol 

with the all-atom force field CHARMM36m is limited in the modeling large-scale 

conformational heterogeneity of IDPs.  The likely best scenario of applying the GBMV2 model 

with CHARMM36m is the explicit/implicit solvent hybrid replica exchange method where 

peptide conformations are generated on an explicit solvent landscape.  By comparison, the 

coarse-grained model yielded an ensemble of thermally accessible states showing conformational 

disorder in the potential of mean force.  Like the all-atom models, the lattice-generated 

conformations were collapsed in fold space on the manifold of highly populated states.      
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■ Figure Legends 

Figure 1. Conformational and energy landscapes computed from the three simulation models 
where the order parameters are radius of gyration, fractional helicity and Z-score of potential 
energies.  Plots display data extracted at T = 300 K for the all-atom simulations and T = 1 for the 
CG lattice Monte Carlo model.  Results are: (A) CHARMM36m/GBMV2 simulation results; (B) 
CHARMM22/GBMV2 simulation results; and (C) CG simulation.  The free energy scale is 
displayed where the color blue represents minima in the PMFs and is followed in order by colors 
green, yellow and red, where the latter denotes high energy states of low population. 

Figure 2. Analysis of structures extracted from the simulations.  (A) The initial prefolded 
conformation observed in the viral assembly where the small peptide represents NPBP and the 
molecular surface represents Ebola virus NP. Further conformations are illustrated taken at T = 
300 K from the CHARMM36m/GBMV2 simulation. (B) Conformations extracted from the 
CHARMM22/GBMV2 simulation.17 (C) Conformations extracted from the CG model 
simulation results at T = 1.  (D) Plots of conformation index versus Cα-RMSD (units of Å) at the 
lowest temperature from the prefolded conformation where the blue colored line and gray data 
set represent the CHARMM36m/GBMV2 simulation results, red colored line represents the 
CHARMM22/GBMV2 simulation and the black colored line represents the CG model.  

Figure 3. Landscape of RMSD in Φ and Ψ (units of angle) in modeled conformations from 
CHARMM36m/GBMV2 simulation compared to the prefolded NPBP for (A) residues Ser30-
Glu31-Gln32 of α1 and (B) residues Val40-Ser41-Asp42 of α2.  Colors applied in the PMFs and 
their scales are noted in Figure 1.  

Figure 4. Helix stiffness and compactness propensity of generated conformations by the 
simulation models along the temperature profile.  Line with red color circles represents a 
statistical average of data from the CHARMM36m/GBMV2 simulation, blue colored line and 

symbols represent values of fH and Rg where WT(fH,Rg) = 0 for CHARMM36m/GBMV2 dataset, 

long-dashed line represents CHARMM22/GBMV2, and short-dashed line represents the CG 
model.  (A) fH versus T; and (B) Rg versus T.  Standard deviation for CHARMM36m/GBMV2 

simulation generating fH at T = 300 K is  0.10 and  0.02 at T = 475 K; for Rg the standard 

deviation is  0.38 Å at T = 300 K and for T = 475 K, deviation is  2.64 Å.  Error in 

determining the minima in WT(fH,Rg) along the temperature coordinate is ~ 0.1 kcal/mol. 
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